Python Queue Trigger Binding
The Azure Queue Storage trigger for Azure Functions allows you to run a function in response to new messages being added to an Azure Queue. This binding is useful for processing messages asynchronously, decoupling services, and handling background tasks.
Prerequisites
- An Azure account.
- An Azure Storage account.
- Azure Functions Core Tools installed.
- A Python development environment.
Configuration
            The queue trigger binding is configured in your function's function.json file.
            The following is an example configuration:
        
            
{
  "scriptFile": "__init__.py",
  "bindings": [
    {
      "name": "msg",
      "type": "queueTrigger",
      "direction": "in",
      "queueName": "myqueue-items",
      "connection": "AzureWebJobsStorage"
    }
  ]
}
            
        
        Binding Properties
| Property | Description | Required | 
|---|---|---|
| name | The name of the variable that represents the message in your function code. | Yes | 
| type | Must be set to queueTrigger. | Yes | 
| direction | Must be set to infor a trigger. | Yes | 
| queueName | The name of the queue to monitor. | Yes | 
| connection | The name of an app setting that contains your Azure Storage connection string. If not specified, the default AzureWebJobsStorageapp setting is used. | No | 
Python Function Code
Your Python function will receive the queue message as an argument. The type of the argument depends on the message content. For simple string messages, it will be a string. For JSON messages, it can be deserialized into a Python dictionary or object.
            
import logging
import azure.functions as func
def main(msg: func.QueueMessage) -> None:
    logging.info('Python queue trigger function processed a queue item.')
    message_body = msg.get_body().decode('utf-8')
    logging.info(f"Received message: {message_body}")
    # Example: Process JSON message
    try:
        message_data = msg.get_json()
        logging.info(f"Parsed JSON: {message_data}")
        # Do something with message_data
    except ValueError:
        logging.warning("Message is not valid JSON.")
    # Example: Access message metadata
    logging.info(f"Message ID: {msg.id}")
    logging.info(f"Insertion Time: {msg.insertion_time}")
    logging.info(f"Expiration Time: {msg.expiration_time}")
    logging.info(f"Dequeue Count: {msg.dequeue_count}")
            
        
        Message Handling
- String Messages: Use msg.get_body().decode('utf-8')to get the message content as a string.
- JSON Messages: If your queue messages are in JSON format, you can use msg.get_json()to automatically deserialize them into a Python dictionary. AValueErrorwill be raised if the message is not valid JSON.
- Binary Data: For binary messages, you can access the raw bytes using msg.get_body().
- Message Metadata: The func.QueueMessageobject provides access to metadata likeid,insertion_time,expiration_time, anddequeue_count.
Error Handling and Retries
Azure Functions automatically handles retries for queue messages. If your function throws an unhandled exception, the message will be returned to the queue for processing later. You can configure retry behavior at the queue level in Azure Storage.
Monitoring
You can monitor your queue trigger function's activity using Azure Application Insights, which provides detailed logs, metrics, and performance data.