TensorFlow Basics

Welcome to the TensorFlow Basics tutorial. This guide will walk you through installing TensorFlow.js, creating simple tensors, building a neural network, and running it directly in the browser.

1️⃣ Installation

TensorFlow.js can be included via a CDN. Add the following script tag to your HTML head:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@4.15.0/dist/tf.min.js"></script>

2️⃣ Hello TensorFlow

Creating and printing a tensor:

const a = tf.tensor([1, 2, 3, 4]);
a.print();

3️⃣ Build a Simple Linear Model

This example fits a line y = 2x - 1 using gradient descent.

async function runLinearModel() {
  // Training data
  const xs = tf.tensor1d([0, 1, 2, 3, 4]);
  const ys = tf.tensor1d([ -1, 1, 3, 5, 7]); // y = 2x -1

  // Define a simple sequential model
  const model = tf.sequential();
  model.add(tf.layers.dense({units:1, inputShape:[1]}));

  // Compile with optimizer & loss
  model.compile({optimizer:'sgd', loss:'meanSquaredError'});

  // Train
  await model.fit(xs, ys, {epochs:200, verbose:0});

  // Predict
  const preds = model.predict(tf.tensor1d([5,6]));
  const predVals = await preds.data();

  return predVals;
}

runLinearModel().then(vals => {
  document.getElementById('out-1').textContent = 
    'Predictions for x=5,6 => [' + vals.map(v=>v.toFixed(2)).join(', ') + ']';
});

4️⃣ Understanding the Output

The model learns the relationship between x and y. After training, it predicts values close to the true line (e.g., for x=5 the true y is 9).

5️⃣ Further Resources