Natural Language Processing with TensorFlow

Explore powerful techniques for understanding and generating human language.

Unlock the Power of Text with TensorFlow

Natural Language Processing (NLP) is a fascinating field that enables computers to understand, interpret, and generate human language. TensorFlow, a leading open-source library for machine learning, provides a robust ecosystem for building and deploying sophisticated NLP models. This collection of tutorials will guide you through various NLP tasks using TensorFlow, from basic text processing to advanced deep learning architectures.

Whether you're a beginner looking to get started or an experienced practitioner seeking to deepen your knowledge, these resources offer practical examples and in-depth explanations.

Featured Tutorials

Text Classification

Sentiment Analysis with RNNs

Learn to build a recurrent neural network (RNN) model to classify the sentiment of text data, like movie reviews.


import tensorflow as tf
from tensorflow.keras.layers import Embedding, SimpleRNN, Dense

# ... model definition ...
model = tf.keras.Sequential([
    Embedding(input_dim=vocab_size, output_dim=embedding_dim),
    SimpleRNN(units=32),
    Dense(1, activation='sigmoid')
])
# ... training code ...
                        
Sequence to Sequence

Machine Translation with LSTMs

Develop a sequence-to-sequence model using LSTMs to translate text from one language to another.


# Encoder-Decoder Architecture
encoder_input = tf.keras.Input(shape=(None,))
decoder_target = tf.keras.Input(shape=(None,))

encoder_lstm = tf.keras.layers.LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)

decoder_lstm = tf.keras.layers.LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=[state_h, state_c])
# ... output layer ...
                        
Text Generation

Character-Level Text Generation

Explore how to generate new text that mimics a given style and content using character-level prediction.


model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Example generation snippet
def sample(preds, temperature=1.0):
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds + 1e-7) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)
                        
Word Embeddings

Understanding Word Embeddings

Dive into the concepts of word embeddings like Word2Vec and GloVe, and how to use them in TensorFlow.


from tensorflow.keras.layers import Embedding
from gensim.models import Word2Vec

# Load pre-trained embeddings or train your own
model = Word2Vec(sentences=tokenized_sentences, vector_size=100, window=5, min_count=5, workers=4)
embedding_matrix = model.wv.get_matrix()

embedding_layer = Embedding(input_dim=vocab_size,
                            output_dim=embedding_dim,
                            weights=[embedding_matrix],
                            trainable=False)