Deep Learning GPU Performance

Understanding how to maximize GPU utilization when training deep neural networks is key to reducing time‑to‑insight. Below we discuss best practices, tooling, and benchmark results across popular frameworks.

Key Factors

Sample Benchmark (PyTorch)

#!/usr/bin/env python
import torch, time

model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=False).cuda()
input = torch.randn(64, 3, 224, 224).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

def train_step():
    optimizer.zero_grad()
    output = model(input)
    loss = output.mean()
    loss.backward()
    optimizer.step()

# Warm‑up
for _ in range(10):
    train_step()

# Timing
start = time.time()
for _ in range(100):
    train_step()
print(f"Throughput: {64*100/(time.time()-start):.2f} images/sec")

Visualization

Comments

AliceSep 13, 2025
Great overview! I found that using torch.backends.cudnn.benchmark = True gave me an extra 10% boost on a RTX 3090.
12
BobSep 12, 2025
Has anyone tried the latest TensorRT integration? The speed‑up is impressive for inference workloads.
8