Blob Storage Bindings
This document provides a detailed explanation of how to use Blob Storage bindings in Azure Functions. Blob Storage bindings allow you to easily connect to Azure Blob Storage from your functions, enabling you to read from and write to blobs.
Introduction to Blob Storage Bindings
Azure Functions offers flexible ways to interact with Azure Blob Storage. Blob Storage bindings act as declarative connections, simplifying the process of accessing blob data within your function code. You can configure them as input, output, or trigger bindings.
Blob Input Bindings
Blob input bindings allow you to read the content of a blob into your function. The content can be passed as a string, byte array, or a stream, depending on the data type you specify.
Configuration
In your function.json
file, define an input binding with the type blob
:
{
"scriptFile": "run.py",
"bindings": [
{
"name": "myBlob",
"type": "blobTrigger",
"direction": "in",
"path": "samples-workitems/{name}",
"connection": "AzureWebJobsStorage"
},
{
"name": "inputBlob",
"type": "blob",
"direction": "in",
"path": "samples-workitems/{name}",
"connection": "AzureWebJobsStorage"
},
{
"name": "outputBlob",
"type": "blob",
"direction": "out",
"path": "output-blobs/{name}.txt",
"connection": "AzureWebJobsStorage"
}
]
}
Usage in Code (Python Example)
The blob content is available as a parameter in your function:
import logging
import azure.functions as func
def main(myBlob: func.InputStream, inputBlob: str, outputBlob: func.Out[str]):
logging.info(f"Python blob trigger function processed blob")
logging.info(f"Name: {myBlob.name}")
logging.info(f"Size: {myBlob.length} Bytes")
logging.info(f"Input Blob Content: {inputBlob}")
outputBlob.set(f"Processed content: {inputBlob.upper()}")
logging.info("Successfully wrote to output blob.")
Blob Output Bindings
Blob output bindings allow you to write data from your function to a blob. This is useful for storing results, logs, or generated content.
Configuration
Define an output binding with the type blob
in function.json
:
{
"scriptFile": "run.py",
"bindings": [
{
"name": "inputBlob",
"type": "blobTrigger",
"direction": "in",
"path": "samples-workitems/{name}",
"connection": "AzureWebJobsStorage"
},
{
"name": "outputBlob",
"type": "blob",
"direction": "out",
"path": "output-blobs/{name}.processed.txt",
"connection": "AzureWebJobsStorage"
}
]
}
Usage in Code (Python Example)
Use the output binding parameter to write data:
import logging
import azure.functions as func
def main(inputBlob: func.InputStream, outputBlob: func.Out[str]):
logging.info(f"Python blob trigger function processed blob")
content = inputBlob.read().decode('utf-8')
logging.info(f"Input content: {content}")
processed_content = content.lower()
outputBlob.set(f"Processed: {processed_content}")
logging.info("Output blob written successfully.")
Blob Trigger Bindings
Blob trigger bindings invoke your function when a new or updated blob is detected in a specified container. This is a powerful way to build event-driven architectures.
Configuration
Define a trigger binding with the type blobTrigger
:
{
"scriptFile": "run.py",
"bindings": [
{
"name": "myBlob",
"type": "blobTrigger",
"direction": "in",
"path": "samples-data/{name}",
"connection": "AzureWebJobsStorage"
}
]
}
Usage in Code (Python Example)
The blob content and metadata are passed to your function:
import logging
import azure.functions as func
def main(myBlob: func.InputStream):
logging.info(f"Python blob trigger function processed blob")
logging.info(f"Blob Name: {myBlob.name}")
logging.info(f"Blob Size: {myBlob.length} bytes")
blob_content = myBlob.read().decode('utf-8')
logging.info(f"Blob Content: {blob_content}")
Common Scenarios
- Data Processing: Trigger a function when new data files are uploaded to Blob Storage for processing.
- Image Manipulation: Resize or process images upon upload.
- File Archiving: Move or archive processed files to a different location.
- ETL Pipelines: Extract, Transform, and Load data from blob files.
Important Considerations
path
property in function.json
uses a wildcard syntax. The part within curly braces (e.g., {name}
) is a variable that captures the blob name and can be used in other bindings or within your function code.