Azure CLI ml extension reference

Reference documentation for the Azure CLI ml extension for Azure Machine Learning.

Azure CLI ml extension Commands

This document provides a comprehensive reference for the az ml extension, which enables you to manage your Azure Machine Learning resources directly from your command line.

az ml job

Manage machine learning jobs.

Subgroups

Example:

az ml job create --file job.yml

az ml environment

Manage machine learning environments.

Subgroups

Example:

az ml environment create --file env.yml

az ml component

Manage machine learning components.

Subgroups

Example:

az ml component create --file component.yml

az ml data

Manage machine learning data assets.

Subgroups

Example:

az ml data create --file data.yml

az ml workspace

Manage machine learning workspaces.

Subgroups

Example:

az ml workspace create --name myworkspace --resource-group myrg

az ml compute

Manage compute resources.

Subgroups

Example:

az ml compute create --type AmlCompute --name gpu-cluster --min-instances 0 --max-instances 4

az ml endpoint

Manage inference endpoints.

Subgroups

Example:

az ml endpoint create --file endpoint.yml

az ml model

Manage model assets.

Subgroups

Example:

az ml model create --name my-model --version 1 --path ./model/

az ml registry

Manage model and component registries.

Subgroups

Example:

az ml registry create --name my-registry --resource-group myrg

az ml asset

Manage Azure Machine Learning assets (jobs, environments, components, data, models).

This command is an alias for specific asset types (e.g., az ml job, az ml environment).

Example:

az ml asset list --type job

az ml connection

Manage connections to external services.

Subgroups

Example:

az ml connection create --name my-storage-connection --resource-group myrg --workspace-name myworkspace --type storage --connection-string "DefaultEndpointsProtocol=https;AccountName=mystorageaccount;..."

az ml code

Manage code assets for Azure Machine Learning.

Subgroups

Example:

az ml code create --path ./src --name my-code-asset --version 1