Azure CLI ml extension Commands
This document provides a comprehensive reference for the az ml extension, which enables you to manage your Azure Machine Learning resources directly from your command line.
az ml job
Manage machine learning jobs.
Subgroups
create: Create a job.list: List jobs.show: Show job details.cancel: Cancel a job.stream: Stream job logs.
Example:
az ml job create --file job.yml
az ml environment
Manage machine learning environments.
Subgroups
create: Create an environment.list: List environments.show: Show environment details.update: Update an environment.delete: Delete an environment.
Example:
az ml environment create --file env.yml
az ml component
Manage machine learning components.
Subgroups
create: Create a component.list: List components.show: Show component details.update: Update a component.delete: Delete a component.
Example:
az ml component create --file component.yml
az ml data
Manage machine learning data assets.
Subgroups
create: Create a data asset.list: List data assets.show: Show data asset details.update: Update a data asset.delete: Delete a data asset.
Example:
az ml data create --file data.yml
az ml workspace
Manage machine learning workspaces.
Subgroups
create: Create a workspace.list: List workspaces.show: Show workspace details.update: Update a workspace.delete: Delete a workspace.
Example:
az ml workspace create --name myworkspace --resource-group myrg
az ml compute
Manage compute resources.
Subgroups
create: Create a compute resource.list: List compute resources.show: Show compute resource details.update: Update a compute resource.delete: Delete a compute resource.
Example:
az ml compute create --type AmlCompute --name gpu-cluster --min-instances 0 --max-instances 4
az ml endpoint
Manage inference endpoints.
Subgroups
create: Create an endpoint.list: List endpoints.show: Show endpoint details.update: Update an endpoint.delete: Delete an endpoint.scoring-request: Make a scoring request to an endpoint.
Example:
az ml endpoint create --file endpoint.yml
az ml model
Manage model assets.
Subgroups
create: Create a model asset.list: List model assets.show: Show model asset details.update: Update a model asset.delete: Delete a model asset.
Example:
az ml model create --name my-model --version 1 --path ./model/
az ml registry
Manage model and component registries.
Subgroups
create: Create a registry.list: List registries.show: Show registry details.update: Update a registry.delete: Delete a registry.
Example:
az ml registry create --name my-registry --resource-group myrg
az ml asset
Manage Azure Machine Learning assets (jobs, environments, components, data, models).
This command is an alias for specific asset types (e.g., az ml job, az ml environment).
Example:
az ml asset list --type job
az ml connection
Manage connections to external services.
Subgroups
create: Create a connection.list: List connections.show: Show connection details.update: Update a connection.delete: Delete a connection.
Example:
az ml connection create --name my-storage-connection --resource-group myrg --workspace-name myworkspace --type storage --connection-string "DefaultEndpointsProtocol=https;AccountName=mystorageaccount;..."
az ml code
Manage code assets for Azure Machine Learning.
Subgroups
create: Upload and register code.list: List registered code assets.show: Show details of a code asset.delete: Delete a code asset.
Example:
az ml code create --path ./src --name my-code-asset --version 1