Monitor Your Azure Machine Learning Experiments
Gain visibility into the performance of your Azure Machine Learning experiments. Track metrics, logs, and resource utilization to optimize your models and workflows.
Real-time Metrics
Track key metrics such as training time, GPU utilization, and memory consumption in real-time.
Log Management
Collect and analyze logs from your experiments to identify issues and improve model accuracy.
Examples
Python SDK Example: Get Metrics
import logging
from azure.machinelearning.core import MetricCategory, MetricName, MetricValue, MetricUnit
# Define a metric category
metric_category = MetricCategory("TrainingTime")
# Define a metric name
metric_name = MetricName("TrainingDuration", "Seconds")
# Define a metric value
metric_value = MetricValue(60.5)
# Define a metric unit
metric_unit = MetricUnit.Seconds
PowerShell Example: Get Metrics
# Create a MetricCategory object
$MetricCategory = New-AzMachineLearningJobMetricCategory -Name "TrainingTime"
# Create a Metric object
$Metric = New-AzMachineLearningJobMetric -JobName "MyExperiment" -MetricName "TrainingDuration" -MetricCategory $MetricCategory -Value 60.5 -Unit Seconds