Image Classification (ResNet-50)
Measures inference performance for a common image classification model.
Model: ResNet-50
Dataset: ImageNet (subset)
Batch Size: 32
Precision: FP16
Average Latency: 8.5 ms
Dataset: ImageNet (subset)
Batch Size: 32
Precision: FP16
// Example Snippet (Conceptual)
auto result = directmlDevice.ExecuteInference(model, inputTensor, outputTensor);
if (result.success) {
// Process results...
}
Object Detection (YOLOv4)
Evaluates throughput for real-time object detection tasks.
Model: YOLOv4
Dataset: COCO (subset)
Batch Size: 16
Precision: FP32
Throughput: 120 FPS
Dataset: COCO (subset)
Batch Size: 16
Precision: FP32
// Example Snippet (Conceptual)
auto frames = captureCameraFeed();
for (const auto& frame : frames) {
auto detections = directmlDevice.DetectObjects(yoloModel, frame);
// Render bounding boxes...
}
Natural Language Processing (BERT)
Assesses performance for complex NLP tasks like text classification.
Model: BERT-base
Task: Sentiment Analysis
Batch Size: 64
Precision: INT8
Queries per Second: 500 QPS
Task: Sentiment Analysis
Batch Size: 64
Precision: INT8
// Example Snippet (Conceptual)
auto sentences = loadSentences();
for (const auto& sentence : sentences) {
auto sentiment = directmlDevice.AnalyzeSentiment(bertModel, sentence);
// Log sentiment...
}
Generative Models (StyleGAN2)
Reports generation speed for high-fidelity synthetic data.
Model: StyleGAN2
Task: Image Generation
Latent Vector Size: 512
Precision: FP16
Images per Second: 15 IPS
Task: Image Generation
Latent Vector Size: 512
Precision: FP16
// Example Snippet (Conceptual)
auto noise = generateLatentVector();
auto generatedImage = directmlDevice.GenerateImage(styleganModel, noise);
saveImage(generatedImage, "output.png");