Deep dive into the powerful features of our Go SDK.
Leveraging Go's built-in concurrency primitives is crucial for building scalable and responsive applications with the SDK. This section explores how to effectively manage goroutines, channels, and wait groups.
When performing multiple independent operations with the SDK, such as fetching data from different endpoints or processing multiple records, launching them as goroutines can significantly improve performance.
import (
"fmt"
"sync"
"your_sdk_package" // Replace with your actual SDK package
)
func main() {
var wg sync.WaitGroup
client := your_sdk_package.NewClient("your_api_key")
// Example: Fetching data from multiple sources concurrently
dataSources := []string{"source1", "source2", "source3"}
for _, source := range dataSources {
wg.Add(1)
go func(s string) {
defer wg.Done()
data, err := client.FetchData(s)
if err != nil {
fmt.Printf("Error fetching from %s: %v\n", s, err)
return
}
fmt.Printf("Data from %s: %v\n", s, data)
}(source)
}
wg.Wait()
fmt.Println("All data fetched.")
}
Channels provide a safe and elegant way for goroutines to communicate with each other. Use channels to pass results, synchronize operations, or signal completion.
func processData(data <-chan string, results chan<- string, wg *sync.WaitGroup) {
defer wg.Done()
for item := range data {
// Simulate processing
processedItem := fmt.Sprintf("PROCESSED: %s", item)
results <- processedItem
}
}
func main() {
var wg sync.WaitGroup
inputData := []string{"itemA", "itemB", "itemC"}
dataCh := make(chan string, len(inputData))
resultsCh := make(chan string, len(inputData))
// Populate data channel
for _, item := range inputData {
dataCh <- item
}
close(dataCh) // Close channel to signal no more data
// Start worker goroutines
numWorkers := 3
wg.Add(numWorkers)
for i := 0; i < numWorkers; i++ {
go processData(dataCh, resultsCh, &wg)
}
// Wait for all workers to finish and close results channel
go func() {
wg.Wait()
close(resultsCh)
}()
// Collect results
fmt.Println("Processing complete:")
for result := range resultsCh {
fmt.Println(result)
}
}
Robust error handling is paramount. Learn how to handle API errors gracefully, implement retry mechanisms, and utilize context for request cancellation.
Define custom error types to provide more specific information about failures.
import (
"errors"
"fmt"
"your_sdk_package"
)
type APIError struct {
StatusCode int
Message string
}
func (e *APIError) Error() string {
return fmt.Sprintf("API Error %d: %s", e.StatusCode, e.Message)
}
func (c *your_sdk_package.Client) CallAPI(endpoint string) (string, error) {
// ... API call logic ...
if apiFailed {
return "", &APIError{StatusCode: 500, Message: "Internal Server Error"}
}
return "Success", nil
}
func main() {
client := your_sdk_package.NewClient("api_key")
_, err := client.CallAPI("/resource")
if err != nil {
var apiErr *APIError
if errors.As(err, &apiErr) {
fmt.Printf("Caught specific API error: Status %d, %s\n", apiErr.StatusCode, apiErr.Message)
} else {
fmt.Printf("Caught general error: %v\n", err)
}
}
}
The context.Context is indispensable for managing request lifecycles, including cancellation and deadlines.
import (
"context"
"fmt"
"time"
"your_sdk_package"
)
func main() {
client := your_sdk_package.NewClient("api_key")
// Create a context with a 5-second timeout
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel() // Always call cancel to release resources
go func() {
// Simulate a long-running operation that might be cancelled
result, err := client.LongRunningOperation(ctx)
if err != nil {
if err == context.DeadlineExceeded {
fmt.Println("Operation timed out.")
} else {
fmt.Printf("Operation failed: %v\n", err)
}
return
}
fmt.Printf("Operation successful: %s\n", result)
}()
// Allow operation to run, or be cancelled by timeout
time.Sleep(6 * time.Second) // Exceeds timeout
}
Discover techniques to maximize the efficiency of your SDK usage.
Whenever possible, use batch endpoints to reduce the number of individual API calls, saving latency and resources.
The SDK automatically manages persistent HTTP connections to minimize connection overhead for repeated requests.
Understand the SDK's default serialization format (e.g., JSON) and consider efficient alternatives if available.
Be mindful of API rate limits. Implement appropriate backoff strategies or use SDK features designed for rate limit handling.
Writing effective tests is key to ensuring your application behaves as expected when interacting with the SDK.
Use mocking libraries to isolate your application logic from actual API calls during unit tests.
import (
"testing"
"github.com/stretchr/testify/mock"
"your_sdk_package"
)
// Define a mock for the SDK client
type MockSDKClient struct {
mock.Mock
}
func (m *MockSDKClient) FetchData(source string) (string, error) {
args := m.Called(source)
return args.String(0), args.Error(1)
}
func TestMyApplicationLogic(t *testing.T) {
mockClient := new(MockSDKClient)
// Set up expectations for the mock
mockClient.On("FetchData", "source1").Return("mocked_data_1", nil)
// Call your function that uses the SDK client
result, err := yourFunctionThatUsesSDK(mockClient, "source1")
// Assertions
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if result != "processed_mocked_data_1" { // Assuming your function processes it
t.Errorf("Expected result 'processed_mocked_data_1', got '%s'", result)
}
mockClient.AssertExpectations(t) // Verify that all expectations were met
}