Azure Docs

Azure AI Machine Learning Quickstarts

Get up and running quickly with Azure Machine Learning. Choose your preferred tool and start building intelligent solutions.

Python SDK Quickstart

Set up your environment, create a workspace, and run a basic training script using the Azure ML Python SDK.

# Install SDK
pip install azure-ai-ml

# Create a workspace
from azure.ai.ml import MLClient
from azure.identity import DefaultAzureCredential

ml_client = MLClient(
    credential=DefaultAzureCredential(),
    subscription_id="YOUR_SUBSCRIPTION_ID",
    resource_group_name="YOUR_RESOURCE_GROUP",
    workspace_name="YOUR_WORKSPACE"
)

# Submit a training job
from azure.ai.ml.entities import Job
job = Job(
    code="./src",
    command="python train.py",
    environment="AzureML-sklearn-0.24-ubuntu20.04-py38-cpu:1",
    compute="cpu-cluster",
    experiment_name="quickstart-experiment"
)
ml_client.jobs.create_or_update(job)

CLI Quickstart

Use Azure CLI to create resources and run a simple training job without writing code.

# Login
az login

# Set defaults
az account set --subscription YOUR_SUBSCRIPTION_ID
az configure --defaults group=YOUR_RESOURCE_GROUP workspace=YOUR_WORKSPACE

# Create compute target
az ml compute create -n cpu-cluster --type amlcompute --size Standard_DS3_v2 --min-instances 0 --max-instances 4

# Submit a run
az ml job create -f job.yml

Azure Portal Quickstart

Launch the Azure Machine Learning studio and follow the guided steps to create a workspace and run a sample experiment.

Open Studio

Jupyter Notebook Quickstart

Start an interactive notebook in Azure ML and experiment with data, models, and pipelines.

%load_ext azureml.core
from azureml.core import Workspace, Experiment, Run

ws = Workspace.from_config()
experiment = Experiment(ws, "quickstart-notebook")
run = experiment.start_logging()
# Your notebook code here
run.complete()