Get up and running quickly with Azure Machine Learning. Choose your preferred tool and start building intelligent solutions.
Set up your environment, create a workspace, and run a basic training script using the Azure ML Python SDK.
# Install SDK pip install azure-ai-ml # Create a workspace from azure.ai.ml import MLClient from azure.identity import DefaultAzureCredential ml_client = MLClient( credential=DefaultAzureCredential(), subscription_id="YOUR_SUBSCRIPTION_ID", resource_group_name="YOUR_RESOURCE_GROUP", workspace_name="YOUR_WORKSPACE" ) # Submit a training job from azure.ai.ml.entities import Job job = Job( code="./src", command="python train.py", environment="AzureML-sklearn-0.24-ubuntu20.04-py38-cpu:1", compute="cpu-cluster", experiment_name="quickstart-experiment" ) ml_client.jobs.create_or_update(job)
Use Azure CLI to create resources and run a simple training job without writing code.
# Login az login # Set defaults az account set --subscription YOUR_SUBSCRIPTION_ID az configure --defaults group=YOUR_RESOURCE_GROUP workspace=YOUR_WORKSPACE # Create compute target az ml compute create -n cpu-cluster --type amlcompute --size Standard_DS3_v2 --min-instances 0 --max-instances 4 # Submit a run az ml job create -f job.yml
Launch the Azure Machine Learning studio and follow the guided steps to create a workspace and run a sample experiment.
Start an interactive notebook in Azure ML and experiment with data, models, and pipelines.
%load_ext azureml.core from azureml.core import Workspace, Experiment, Run ws = Workspace.from_config() experiment = Experiment(ws, "quickstart-notebook") run = experiment.start_logging() # Your notebook code here run.complete()