Secure, scalable, and cost-effective storage for big data analytics. Store any type of data, at any scale, with enterprise‑grade security and management features.
Petabytes of data with virtually unlimited storage capacity across regions.
Organize data with directories and files for faster analytics and fine‑grained security.
Integration with Azure Active Directory, role‑based access control, and encryption at rest.
Pay‑as‑you‑go pricing, lifecycle policies, and tiered storage for optimal cost control.
Follow the steps below to create a Data Lake Storage Gen2 account and begin ingesting data.
az storage account create \
--name mydatalake \
--resource-group MyResourceGroup \
--location eastus \
--sku Standard_LRS \
--kind StorageV2 \
--hierarchical-namespace true
az storage fs create \
--name myfilesystem \
--account-name mydatalake
az storage fs file upload \
--account-name mydatalake \
--file-system myfilesystem \
--path raw/data.csv \
--source ./data.csv
For a step‑by‑step walkthrough, see the Quickstart guide.
Use the Azure SDK for Python to interact with Data Lake Storage.
from azure.storage.filedatalake import DataLakeServiceClient
service = DataLakeServiceClient(account_url="https://mydatalake.dfs.core.windows.net",
credential="<account-key>")
filesystem = service.get_file_system_client("myfilesystem")
file_client = filesystem.get_file_client("raw/data.csv")
# Read file content
download = file_client.download_file()
print(download.readall().decode())