Enhance your database speed and efficiency
Achieving optimal performance in Azure SQL Database involves a multi-faceted approach. This section covers essential techniques and best practices to ensure your database runs efficiently and scales effectively.
Choosing the right service tier and compute size is fundamental. Azure SQL Database offers various models like DTUs and vCore, each with different performance characteristics. Monitor your workload and adjust your provisioning as needed.
Consider using the Elastic Scale features for managing a large number of databases with varying performance needs.
Inefficient queries are a common bottleneck. Utilize tools like Query Store and Dynamic Management Views (DMVs) to identify and resolve slow-running queries.
Proper indexing is crucial for query performance. Ensure your indexes are well-defined and maintained.
Regularly rebuild or reorganize fragmented indexes.
Wait statistics indicate what resources or events are causing queries to pause. Analyzing these can pinpoint performance issues. Common waits include CPU, I/O, and locking.
SELECT wait_type, SUM(wait_time_ms) AS total_wait_time_ms
FROM sys.dm_os_wait_stats
WHERE wait_type NOT IN (
'BROKER_EVENTHANDLER', 'BROKER_RECEIVE_WAITFOR', 'BROKER_TASK_STOP',
'BROKER_WAIT_FOR_RETURN', 'BROKER_TASK_STOP', 'COLLECTOR_QUEUE',
'DBMIRROR_DBM_EVENT', 'DBMIRROR_EVENTS_QUEUE', 'DBMIRROR_WORKER_QUEUE',
'DBMIRRORING_CMD', 'DIRTY_PAGE_TABLE', 'DISPATCHER_QUEUE',
'EXECSYNC', 'FSAGENT', 'FT_IFTS_SCHEDULER_IDLE_WAIT', 'FT_IFTSHC_MUTEX',
'HADR_CHANNEL_GROUP', 'HADR_COLLECTOR_RETRY', 'HADR_FILESTREAM_IOMGR_IO_COMPLETION',
'HADR_LOGCAPTURE_WAIT', 'HADR_NOTIFICATION_DEFERRED_SEND', 'HADR_SESSION_STATE_TRANSITION',
'HADR_TASK_REPLAY', 'HADR_WORK_QUEUE', 'KILOBYTE_FLUSH',
'LAZYWRITER_SLEEP', 'LOGMGR_QUEUE', 'MEMORY_ALLOCATION_EXT', 'ONDEMAND_TASK_QUEUE',
'PARALLEL_REDO_DRAIN_WORKER', 'PARALLEL_REDO_LOG_CAPTURE', 'PARALLEL_REDO_TRAN_LIST',
'PARALLEL_REDO_WORKER', 'PARALLEL_REDO_WORKER_SYNC', 'PWAIT_ALL_COMPONENTS_INITIALIZED',
'PWAIT_DIRECTLOGCONSUMER_TASK', 'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',
'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', 'REQUEST_FOR_DEADLOCK_SEARCH',
'RESOURCE_QUEUE', 'SERVER_IDLE_CHECK', 'SLEEP_BPOOL_FLUSH', 'SLEEP_DBSTARTUP',
'SLEEP_DCOMSTARTUP', 'SLEEP_MASTERDBREADY', 'SLEEP_MASTERMDREADY',
'SLEEP_MASTERVISIT', 'SLEEP_PORT', 'SLEEP_SYSTEMTASK', 'SLEEP_TASK',
'SLEEP_TEMPDBSTARTUP', 'SNI_HTTP_ACCEPT', 'SP_SERVER_DIAGNOSTICS_SLEEP',
'SQLTRACE_BUFFER_FLUSH', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP', 'SQLTRACE_WAIT_ENTRIES',
'WAIT_FOR_RESULTS', 'WAIT_XTP_RECOVERY', 'WAIT_XTP_HOST_WAIT', 'WAIT_XTP_OFFLINE_CKPT_NEW_LOG',
'WAIT_XTP_CKPT_CLOSE', 'XE_DISPATCHER_JOIN', 'XE_DISPATCHER_WAIT', 'XE_TIMER_EVENT'
)
GROUP BY wait_type
ORDER BY total_wait_time_ms DESC;
Ensure your applications are using connection pooling effectively. Frequent opening and closing of connections can consume significant resources.
Use appropriate data types for your columns. For example, using VARCHAR(50) instead of VARCHAR(MAX) when the maximum length is known can improve performance and storage efficiency.
By implementing these strategies, you can significantly enhance the performance and responsiveness of your Azure SQL Database. Continuous monitoring and tuning are key to maintaining optimal efficiency.
Continue to the Monitoring section to learn how to track your database's performance.